Pasang Iklan Gratis

mau dapat duit dengan mudah dibayar dolar lagi cepet gabung gratis gak bakal rugi UANG MUDAH DI INTERNET

Flip Flop

Kamis, 09 April 2009

In this project we examine one of the most valuable circuits to be invented - the flip flop. Originally it was designed with VALVES, along with its simpler version (without the two capacitors - called a bi-stable Multivibrator), it was realised it could store a "bit" of information. The bi-stable Multivibrator circuit required an input pulse to the left side of the circuit and the load (say a globe) stayed ON when the signal was removed. A pulse to the other side of the circuit turned the globe OFF. This was the first time an electronic circuit had stored a "piece of information." This was the beginning of the COMPUTER AGE.
When you realise each letter on this page requires 8 circuits like this to store the "bits" you can see how little each "storage element" can hold. That's why you need millions of cells similar to the Flip Flop circuit to hold data for even the simplest application.


RECOGNISING A FLIP FLOP CIRCUIT
The Flip Flop is a symmetrical arrangement using two transistors with cross-coupling. Each transistor has a base bias resistor (10k in our case) and a LED with 470R resistor in the collector lead to form the collector load.

The circuit consists of two identical halves and is called a Flip Flop because one half is ON while the other half is OFF. The ON half is keeping the OFF half OFF but it cannot keep it off indefinitely and gradually the OFF half turns ON via the 10k base-bias resistor.

This drives the ON side OFF and the circuit changes state. In other words it flips over. The same events occur in the other half of the cycle and the circuit eventually flops back again.

This sounds very complicated but in reality the circuit is quite simple in operation as one half is exactly the same as the other and there's only 5 components in each half.

THE FLIP FLOP IS A FREE-RUNNING MULTIVIBRATOR
The circuit is self-starting and only one LED is on at a time. It is a free-running multivibrator (this means it does not stop) and we will describe its operation in a non-technical way. A free-running multivibrator is also called an astable multivibrator (meaning is has no stable states) and that is why it flips from one state to the other continuously.


The standard way to draw this type of multivibrator is to show the two capacitors crossing at the centre of the circuit, this also gives the circuit symmetry and makes it easy to recognise.

The other way to identify an astable multivibrator is knowing that it has two capacitors. (The monostable multivibrator has one capacitor and the bistable multivibrator has no capacitors.)

In simple terms, the astable [pronounced (h)ay-stable] multivibrator has two states. When one transistor is turned on it operates (supplies current to) a LED (or other device) in its output line and at the same time keeps the other transistor off. But it cannot keep
the other off forever and eventually the other transistor begins to turn on. When it does, the action turns the first transistor off slightly and a change-over begins to occur. This produces the flip action.
After a short period of time the other half of the circuit cannot be kept off and the whole arrangement flops back to the first state.

The components that determine the frequency are the electrolytics and two base-bias resistors. If these values are changed, the frequency will alter.
For instance, if the electrolytics are reduced in value,
the frequency will increase and if the resistors are decreased, the frequency will increase.

If you increase the frequency of this circuit to more than 20 cycles per second, it will appear as if both LEDs are on at the same time. But the fact is the circuit will be operating faster than your eye can see and that's why we have chosen large values of capacitance to slow it down.

When the electrolytics and resistors are made equal valu
e (as in our case), each LED flashes for the same length of time. This is called an equal mark-space ratio: (50%:50%). This means the flip time is the same as the flop time.
Theses components can be changed to any ratio, to give different effects.

THE FLIP FLOP IN ACTION

GSM sniffer

Selasa, 07 April 2009


Good device for locating transmitters. It can be tuned down to a few MHz.

It can also be used as GSM RF tracker, to pinpoint a hidden GSM phone or a modem.

Alarm


we certainly can never hear how the alarm sounds are presented from a police car or ambulance. Such units are very expensive if we buy it in the form of so. but how disappointed we did not need to if we want to have units such as these by making
own and do not reduce the quality and quality, setting the size of the volume can be done through potensio
Resistor :

R1 ………………. 27 k

R2 ………………. 68 k

Kapasitor :

C1 ……………….. 100 mikro F/12V

C2 ……………….. 0,02 mikro F

C3 ……………….. 50 mikro F/12V

Transistro :

TR1 ……………….. 2N 554

TR1 ……………….. 2N 554

Speaker …………………………… 2 inchi

SCR


Sillicon Controler Rectifer or often familiar with the name called SCR. One component that is also similar to the transistor because he also has three legs, but feet on the SCR with different transistor because it has a code of feet apart. feet of the SCR is given a code as follows:
A = Anoda
G = Gate
K = cathode
SCR has a variety of power resources, for example, be 100 volt / 2 Ampere or similar and not more than 200 watts. SCR is a function of power as a regulator, and also automatically switch currents

Trafomator

Senin, 06 April 2009


transformer is a tool that shaped wire coil which functions to move the energy from input to output. Transformer used in electrical engineering with the transformer used for electrical engineering. Transformer in general to electronic form only with a small flow is also small. Meanwhile, if the electrical engineering, although the shape may be similar but clearly different functions, in the sense of having a high voltage at this time. However, all remain the same, namely tranfomator.


type - type of transformator
a. tranformator Stepup work to increase the voltage.
b. tranformator StepDown to lower voltage.
c. change the adapter from the AC current into DC.
d. tranfomator brace middle frequency (1F transformer)
dll.

IC ( Integrated Circuits )

Integrated Circuits are usually called ICs or chips. They are complex circuits which have been etched onto tiny chips of semiconductor (silicon). The chip is packaged in a plastic holder with pins spaced on a 0.1" (2.54mm) grid which will fit the holes on stripboard and breadboards. Very fine wires inside the package link the chip to the pins.

Pin numbers

The pins are numbered anti-clockwise around the IC (chip) starting near the notch or dot. The diagram shows the numbering for 8-pin and 14-pin ICs, but the principle is the same for all sizes.

IC holders (DIL sockets)

ICs (chips) are easily damaged by heat when soldering and their short pins cannot be protected with a heat sink. Instead we use an IC holder, strictly called a DIL socket (DIL = Dual In-Line), which can be safely soldered onto the circuit board. The IC is pushed into the holder when all soldering is complete.

IC holders are only needed when soldering so they are not used on breadboards.

Commercially produced circuit boards often have ICs soldered directly to the board without an IC holder, usually this is done by a machine which is able to work very quickly. Please don't attempt to do this yourself because you are likely to destroy the IC and it will be difficult to remove without damage by de-soldering.

Removing an IC from its holder

If you need to remove an IC it can be gently prised out of the holder with a small flat-blade screwdriver. Carefully lever up each end by inserting the screwdriver blade between the IC and its holder and gently twisting the screwdriver. Take care to start lifting at both ends before you attempt to remove the IC, otherwise you will bend and possibly break the pins.

Transistor ( TR ) part 2


2. Testing in a simple switching circuit
Connect the transistor into the circuit shown on the right which uses the transistor as a switch. The supply voltage is not critical, anything between 5 and 12V is suitable. This circuit can be quickly built on breadboard for example. Take care to include the 10kohm resistor in the base connection or you will destroy the transistor as you test it!

If the transistor is OK the LED should light when the switch is pressed and not light when the switch is released.

To test a PNP transistor use the same circuit but reverse the LED and the supply voltage.

Some multimeters have a 'transistor test' function which provides a known base current and measures the collector current so as to display the transistor's DC current gain hFE.

Transistor codesThere are three main series of transistor codes used in the UK:

  • Codes beginning with B (or A), for example BC108, BC478
    The first letter B is for silicon, A is for germanium (rarely used now). The second letter indicates the type; for example C means low power audio frequency; D means high power audio frequency; F means low power high frequency. The rest of the code identifies the particular transistor. There is no obvious logic to the numbering system. Sometimes a letter is added to the end (eg BC108C) to identify a special version of the main type, for example a higher current gain or a different case style. If a project specifies a higher gain version (BC108C) it must be used, but if the general code is given (BC108) any transistor with that code is suitable.
  • Codes beginning with TIP, for example TIP31A
    TIP refers to the manufacturer: Texas Instruments Power transistor. The letter at the end identifies versions with different voltage ratings.
  • Codes beginning with 2N, for example 2N3053
    The initial '2N' identifies the part as a transistor and the rest of the code identifies the particular transistor. There is no obvious logic to the numbering system.

Transistor ( TR ) part 1


Function

Transistors amplify current, for example they can be used to amplify the small output current from a logic IC so that it can operate a lamp, relay or other high current device. In many circuits a resistor is used to convert the changing current to a changing voltage, so the transistor is being used to amplify voltage.

A transistor may be used as a switch (either fully on with maximum current, or fully off with no current) and as an amplifier (always partly on).

Types of transistor

There are two types of standard transistors, NPN and PNP, with different circuit symbols. The letters refer to the layers of semiconductor material used to make the transistor. Most transistors used today are NPN because this is the easiest type to make from silicon. If you are new to electronics it is best to start by learning how to use NPN transistors.

The leads are labelled base (B), collector (C) and emitter (E).
These terms refer to the internal operation of a transistor but they are not much help in understanding how a transistor is used, so just treat them as labels!

Testing a transistor

Transistors can be damaged by heat when soldering or by misuse in a circuit. If you suspect that a transistor may be damaged there are two easy ways to test it:

1. Testing with a multimeter

Use a multimeter or a simple tester(battery, resistor and LED) to check each pair of leads for conduction. Set a digital multimeter to diode test and an analogue multimeter to a low resistance range.

Test each pair of leads both ways (six tests in total):

  • The base-emitter (BE) junction should behave like a diode and conduct one way only.
  • The base-collector (BC) junction should behave like a diode and conduct one way only.
  • The collector-emitter (CE) should not conduct either way.
The diagram shows how the junctions behave in an NPN transistor. The diodes are reversed in a PNP transistor but the same test procedure can be used.

LoudSpeaker


loudspeaker is a tool change electric signals into sound signals.

using a multimeter test the loudspeaker. But the steps - the steps are as follows
1. switch multimeter to ohm
2. pencolok placed second in the respective - respective tape
3. there are speakers in the small print shown on the cable to connect to the speaker where there is a marked positive and negative. this case you can paste the appropriate symbol of the same between the multimeter and the speaker.
4. if the needle on the multimeter to move the loudspeaker means well, but if the needle does not move means the multimeter is broke

One of uncurl About Hacker

One of uncurl About Hacker
In recent years this terminology the hacking tower. Book a "thin", "IM" and use the title of "hacking" into the requirements of the new books popular in Indonesia. This is a dangerous game from the publisher (diamini the author) as a result get to our young generation. Create cultural knowledge that can be obtained quickly, IM, even with enough capital setebal 20-50 page book. That is not craker hacker, hackers build things, while cracker merusaknya. Let us and peeled under the hacker is hacking activities.

Most of the literature mentions that the term hacker culture and first used in 1961 when the opportunity to enjoy the MIT PDP-1 computer. DEC's first computer production has become the favorite toys, especially MIT students who joined the Tech Model Railroad Club. They make programming tools, making a lot of programs, to develop ethical, jargon and even ngoprek PDP-1 machine that will be the next-generation video-game start. This is the culture and popular culture into the actual hacker. The hackers in the Tech Model Railroad Club to become the team's core research laboratory Artificial Intelligence (AI) which is the MIT pioneers in AI research in the world until this time.

ARPAnet project developed by the Department of Defense United States that is not free from intervention from the MIT hackers this. ARPAnet which brings together many of the hacker culture "tribe", for example, from Stanford University and Carnegie Mellon University (CMU). The hackers eventually succeeded MIT even develop their own operating system called ITS (Incompatible Time-Sharing System) is a legendary, replacing Tops-10 produced by the standard operating system for DEC PDP-10. ITS originally built with the assembler, but then changed to record the language, functional programming language that is close to the world's Artificial Intelligence.

Creation of the MIT hackers who is quite legendary Emacs (Richard Stallman paper), editor favorite that is still used by many programmers to unix machine at this time. I know first Emacs when entering the campus at Saitama University in 1995, I used to write all the reports I lecture, reading email, browsing the web, read newsgroups, and even Emacs also that I use to build the next generation IlmuKomputer.Com early. Apart from the MIT hackers, the hackers from Stanford University and CMU also does not want to lose, they even succeeded in developing an application bersekala of expert systems and industrial robots.

From Bell Labs hacker named Ken Thomson who is assisted by another hacker named Dennis Ritchie with the C language to develop the Unix operating system. Collaboration Thomson and Ritchie is a very fenomenal strength, because the machine language and Unix C formula is the development of effective variants of Unix operating system to any at this time (BSD and System V, including the Linux). Please also note that in 1982, the hackers from Stanford and Berkeley, led by William (Bill) Joy founded a company called Sun Microsystems.

1984 started the era of the various cracking episode of rapid appointed by famous because of the press and journalists. Journalists began to mistakenly call penyimpangannya and computer crime as a "hacking activities" where pelakuknya called hackers.

Hacker who is actually like Richard Stallman who fought with the Free Software Foundation and tens of years to build a free operating system called Hurd a dream. Linux Torvald is also a hacker because sincere commitment to keep the kernel development Linuxnya until now. Contributor in the development of Linux and open source software is also a hacker hacker-pure.

Carding the perpetrator (abuse of credit card), phreaking, and defacing is not a hacker, but they are a cracker. Expression of the legendary Eric S Raymond in any posts is entitled to be hackers, "hackers build things, and many merusaknya cracker." Hacker is an unmitigated good programmer. Something that is very foolish when there is a person or group of hackers who claim themselves but not at all understand how to program. The nature of the hackers are happy to share, not take advantage of sharing tool, but sharing knowledge. Hacker sejati is an author who is able to understand and write articles in the native language and English well. Hacker is a nerd who has attitude (attitude) that the basic good, which will respect other people, respect the people who help him, and honor those who have gave him knowledge, facilities or opportunities.

Nature hackers if not confidential in the administration holds a server to take advantage of even cracking. Or even then attack and destroy in the server's ditambahi with derision to the owner to provide a server that has been given the opportunity. I submit to the forced, sayapun never mengalaminya. During this time I always support the youth movement in the virtual world, I am pleased with the spirit of them. Hundreds of the community give me the domain and hosting for free as a reward perdjoeangan because they want to share knowledge to other friends in this country. Unfortunately there is a confessed hacker cracker (though do not have the attitude as a hacker) who deride this opportunity. Once satisfied to make a dedicated server that contains hundreds of other community sites in the enterprise-server shutdown due to phreaking activities which he did, I still defame sempatnya-not as a human being. I will be healed? No:) I still will give the trust, support, server and domain-free activist activist virtual world.

Hacker is not a person with the nickname, screenname or handlename a funny, stupid and incompetent. Eric S Raymond mentions that the name, actually is just a hoax, the incompetent behavior characteristic of a cracker, warez d00dz, and the loser is not responsible for the deeds. Hacker is a reputation, they are proud of the work done and want to work is associated with their actual names. Hacker does not need a computer, because the concept of hacking is the unmitigated learners, full of enthusiastic people to work and never give up because it failed. And hackers can appear in the field of electronics, machinery, architecture, economic, political, and others.

Align problem is that hackers improvement project and save the next generation of the nation. And this can begin with improving the education curriculum so that we able to educate our students to become hackers sincere. And let us together berdjoeang to be the hacker who can benefit and this can increase the republic's destruction.

Digital Step-Km Counter


Rangkaian Digital Step-Km Counter

Komponen :

R1,R3____22K 1/4W Resistor

R2________2M2 1/4W Resistor

R4________1M 1/4W Resistor

R5,R7,R8__4K7 1/4W Resistor

R6_______47R 1/4W Resistor

R9________1K 1/4W Resistor

C1_______47nF 63V Polyester Capacitor

C2______100nF 63V Polyester Capacitor

C3_______10nF 63V Polyester Capacitor

C4_______10µF 25V Electrolytic Capacitor

D1_______Common-cathode 7-segment LED mini-display (Hundreds meters)

D2_______Common-cathode 7-segment LED mini-display (Kilometers)

IC1______4093 Quad 2 input Schmitt NAND Gate IC

IC2______4024 7 stage ripple counter IC

IC3,IC4__4026 Decade counter with decoded 7-segment display outputs IC

Q1,Q2___BC327 45V 800mA PNP Transistors

P1_______SPST Pushbutton (Reset)

P2_______SPST Pushbutton (Display)

SW1______SPST Mercury Switch, called also Tilt Switch

SW2______SPST Slider Switch (Sound on-off)

SW3______SPST Slider Switch (Power on-off)

BZ_______Piezo sounder

B1_______3V Battery (2 AA 1.5V Cells in series)

Device purpose:

This circuit measures the distance covered during a walk. Hardware is located in a small box slipped in pants' pocket and the display is conceived in the following manner: the leftmost display D2 (the most significant digit) shows 0 to 9 Km. and its dot is always on to separate Km. from hm. The rightmost display D1 (the least significant digit) shows hundreds meters and its dot illuminates after every 50 meters of walking. A beeper (excludable), signals each count unit, occurring every two steps.

A normal step was calculated to span around 78 centimeters, thus the LED signaling 50 meters illuminates after 64 steps (or 32 operations of the mercury switch), the display indicates 100 meters after 128 steps and so on. For low battery consumption the display illuminates only on request, pushing on P2. Accidental reset of the counters is avoided because to reset the circuit both pushbuttons must be operated together.

Obviously, this is not a precision meter, but its approximation degree was found good for this kind of device. In any case, the most critical thing to do is the correct placement of the mercury switch inside of the box and the setting of its sloping degree.

Circuit operation:

IC1A & IC1B form a monostable multivibrator providing some degree of freedom from excessive bouncing of the mercury switch. Therefore a clean square pulse enters IC2 that divides by 64. Q2 drives the LED dot-segment of D1 every 32 pulses counted by IC2. Either IC3 & IC4 divide by 10 and drive the displays. P1 resets the counters and P2 enables the displays. IC1C generates an audio frequency square wave that is enabled for a short time at each monostable count. Q1 drives the piezo sounder and SW2 allows to disable the beep.

Notes:

* Experiment with placement and sloping degree of mercury switch inside the box: this is very critical.

* Try to obtain a pulse every two walking steps. Listening to the beeper is extremely useful during setup.

* Trim R6 value to change beeper sound power.

* Push P1 and P2 to reset.

* This circuit is primarily intended for walking purposes. For jogging, further great care must be used with mercury switch placement to avoid undesired counts.

* When the display is disabled current consumption is negligible, therefore SW3 can be omitted.


Semiconductor diodes part 2

Rectifying property of the p-n junction diode


Forward bias: Connecting the positive pole of the battery to the p side of diode, the accumulated charges at the junction are neutralized by the charges supplied from the battery. The free carriers can cross the junction, current flows.

Reverse bias: Connecting the positive pole of the battery to the n side of the diode, the charges of the battery increase the space charge at the junction and prevent the free carriers to cross the junction.



A diode’s I-V characteristic can be approximated by two regions of operation. Below a certain difference in potential between the two leads, the Depletion Layer has significant width, and the diode can be thought of as an open (non-conductive) circuit. As the potential difference is increased, at some stage the diode will become conductive and allow charges to flow, at which point it can be thought of as a connection with zero (or at least very low) resistance. In a normal silicon diode at rated currents, the voltage drop across a conducting diode is approximately 0.6 to 0.7 volts. In the reverse bias region for a normal P-N rectifier diode, the current through the device is very low (in the µA range) for all reverse voltages upto a point called the peak-inverse-voltage (PIV). Beyond this point a process called reverse breakdown occurs which causes the device to be damaged along with a large increase in current. For special purpose diodes like the avalanche or zener diodes, the concept of PIV is not applicable since they have a deliberate breakdown beyond a known reverse current such that the reverse voltage is "clamped" to a known value (called zener voltage). The devices however have a maximum limit to the current and power in the zener or avalanche region.


Types of semiconductor diode

1. Normal (p-n) diodes which operate as described above. Usually made of doped silicon or, more rarely, germanium.

2. Zener diodes can be made to conduct backwards. This effect, called Zener breakdown, occurs at a precisely defined voltage, allowing the diode to be used as a precision voltage reference.

3. Avalanche diodes conduct in the reverse direction when the reverse bias voltage exceeds the breakdown voltage. These are electrically very similar to Zener diodes, and are often mistakenly called Zener diodes, but break down by a different mechanism, the Avalanche Effect. This occurs when the reverse electric field across the p-n junction causes a wave of ionization, reminiscent of an avalanche, leading to a large current. Avalanche diodes are designed to break down at a well-defined reverse voltage without being destroyed.

4. Photodiodes: these have wide, transparent junctions. Photons can push electrons over the junction, causing a current to flow. Photo diodes can be used as solar cells, and in photometry. If a photon doesn't have enough energy, it will not overcome the band gap, and will pass through the junction.

5. Light-emitting diodes (LEDs) In a diode formed from an direct band-gap semiconductor, such as gallium arsenide, carriers that cross the junction emit photons when they recombine with the majority carrier on the other side. Depending on the material, wavelengths (or colors) from the infrared to the near ultraviolet may be produced. The forward potential of these diodes depends on the wavelength of the emitted photons: 1.2 V corresponds to red, 2.4 to violet. The first LED's were red and yellow, and higher-frequency diodes have been developed over time. All LEDs are monochromatic; 'white' LED's are actually combinations of three LED's of a different color, or a blue LED with a yellow scintillator coating.

6. Laser diodes When an LED-like structure is contained in a resonant cavity formed by polishing the parallel end faces, a laser can be formed. Laser diodes are commonly used in optical storage devices and for high speed optical communication.

7. Point Contact Diode This works the same as the junction semiconductor diodes described above, but its construction is simpler. A block of n-type semiconductor is built, and a conducting sharp-point contact made with some group-3 metal is placed in contact with the semiconductor. Some metal migrates into the semiconductor to make a small region of p-type semiconductor near the contact.

8. Varicap or varactor diodes These are used as voltage-controlled capacitors

terima kasih .. sory my enghlis not good

Semiconductor diodes part 1



Semiconductor diodes

The crystalline materials are classified by their conductance to metals, insulators and semiconductors.

In metals, the valence electrons are shared by all metal ions, the electrons can move freely in the crystal and drifted by the effect of an electric field. The high concentration of free electrons makes the metal a good conductor.

In insulators, the electrons are localized to their parent atoms, molecules or ions. The electric field can not remove the electrons from the bonds, they can not take part in conduction.

The electrons of a semiconductor also belong to particular bonds but they can be relatively easily removed by thermal excitation even at room temperature and move freely in the semiconductor crystal. When an electron gets free from a bond, sooner or later its empty place will be filled with an electron from a neighbouring bond. This empty place will migrate in the crystal, like a bubble. This missing electron is called a free hole, and it is considered a free carrier, like the free electron, only with positive charge.

The number of free carriers in a semiconductor is very low (~1014 particles/cm3) and their number increases with increasing temperature. Therefore the conductivity of semiconductors increases with temperature in contrast with the metals.

There are elementary semiconductors like silicon and germanium, and compound semiconductors, like GaAs, InSb and other.

A pure semiconductor contains equal number of free electrons and holes, produced by thermal excitation. Such a crystal is called intrinsic semiconductor.

Each atom of elementary semiconductors like silicon and germanium is connected to its four neighbour by covalent bonds. The number of free carriers in silicon or germanium can be increased by adding group III (boron for example) or group V impurity (arsenic or phosphorus) atoms to the crystal. These impurities substitute for the silicon or germanium atoms.


Donor and acceptor atoms and free electrons and holes in a silicon crystal

A five-valence atom is connected by four bonds to its neighbours but its fifth valence electron is superficial, not needed to the bonds. It is only loosely bound to the parent atom and easily removed, contributing to the free electrons. Such a group -V impurity atom is called donor, and the semiconductor containing donor atoms is called n-type because the majority of the free carriers are electrons.

Substituting an atom by a three-valence atom like boron, one electron is missing to the four bounds. This place of the missing electron is filled by an electron, the empty place moves around in the crystal as a free hole. Such group-III impurity atoms are called acceptors, and the crystal having free holes as majority carriers is called p-type.


THE P-N JUNCTION

If one side of the silicon (germanium) crystal is p-type and the other is n-type, the boundary between these region is called p-n junction.


The free carriers at each side behave as gas, they diffuse to the other side, and their they recombine with the other type of carriers. While the bulk of both sides is electrically neutral, having equal number of negative acceptor ions and positive holes in the P sides, and equal number of positive donor atoms and free electrons in the N side, there are no free carriers in the vicinity of the junction. These region is called depleted region, and its contains localized negative acceptor ions at the P side and positive donor ions at the N side. This charge distribution produces an electric field near the junction which prevents other free carriers to cross the junction.

If we connect leads to both sides of the semiconductor piece we get a p-n junction diode.




Rangkaian Telfon mini


Part Total Qty. Description
R1 1 180 Ohm 1/4 W Resistor
R2 1 12K 1/4 W Resistor
C1 1 330pF Capacitor
C2 1 12pF Capacitor
C3 1 471pF Capacitor
C4 1 22pF Capacitor
Q1 1 2SA933 Transistor
D1, D2, D3, D4 4 1N4007
D5 1 Red LED
S1 1 SPDT Switch
L1 1 Tuning Coil
MISC 1 Wire, Circuit Board

Notes

1. L1 is 7 turns of 22 AWG wire wound on a 9/64 drill bit. You may need to experiment with the number of turns.

2. By stretching and compressing the coils of L1, you can change the frequency of the transmitter. The min frequency is about 88 Mhz, while the max frequency is around 94 Mhz.

3. The green wire from the phone line goes to IN1. The red wire from the phone line goes to IN2. The green wire from OUT1 goes to the phone(s), as well as the red wire from OUT2.

4. The antenna is a piece of thin (22 AWG) wire about 5 inches long.

5. All capacitors are rated for 250V or greater.

6. The transmitter is powered by the phone line and is on only when the phone is in use. S1 can be used to turn the transmitter off if it is not needed.

7. If you have problems with the LED burning out, then add a 300 ohm 1/4W resistor in series with it.

Condensator (Kapasitor)


Kapasitor adalah komponen elektronika yang dapat menyimpan muatan listrik. Struktur sebuah kapasitor terbuat dari 2 buah plat metal yang dipisahkan oleh suatu bahan dielektrik. Bahan-bahan dielektrik yang umum dikenal misalnya :udara vakum, keramik, gelas dan lain-lain. Jika kedua ujung plat metal diberi tegangan listrik, maka muatan-muatan positif akan mengumpul pada salah satu kaki (elektroda) metalnya dan pada saat yang sama muatan-muatan negatif terkumpul pada ujung metal yang satu lagi. Muatan positif tidak dapat mengalir menuju ujung kutup negatif dan sebaliknya muatan negatif tidak bisa menuju ke ujung kutup positif, karena terpisah oleh bahan dielektrikkum yang non-konduktif. Muatan elektrik ini “tersimpan” selama tidak ada konduksi pada ujung-ujung kakinya. Di alam bebas, phenomena kapasitor ini terjadi pada saat terkumpulnya muatan-muatan positif dan negatif di awan, Seperti halnya gamba disamping kapasitor memiliki kapasitansi , Kapasitansi didefenisikan sebagai kemampuan dari suatu kapasitor untuk dapat menampung muatan elektron. Coulombs pada abad 18 menghitung bahwa 1 coulomb = 6.25 x 1018 elektron. Kemudian Michael Faraday membuat postulat bahwa sebuah kapasitor akan memiliki kapasitansi sebesar 1 farad jika dengan
tegangan 1 volt dapat memuat muatan elektron sebanyak 1 coulombs. Dengan rumus dapat ditulis :
Q = CV …………….(1)
Q = muatan elektron dalam C (coulombs)
C = nilai kapasitansi dalam F (farads)
V = besar tegangan dalam V (volt)
Dalam praktek pembuatan kapasitor, kapasitansi dihitung dengan mengetahui luas area plat metal (A), jarak (t) antara kedua plat metal (tebal dielektrik) dan konstanta (k) bahan dielektrik. Dengan rumusan dapat ditulis sebagai berikut : C = (8.85 x 10 ) (k A/t) …(2) -12

Berikut adalah tabel contoh konstanta (k) dari beberapa bahan dielektrik yang disederhanakan.

Udara vakum k = 1
Aluminium oksida k = 8
Keramik k = 100 - 1000
Gelas k = 8
Polyethylene k = 3
Untuk rangkain elektronik praktis, satuan farads adalah sangat besar sekali. Umumnya kapasitor yang ada di pasar memiliki satuan uF (10 F) -6 , nF (10 F) -9 dan pF (10 F) -12 . Konversi satuan penting diketahui untuk memudahkan membaca besaran sebuah kapasitor. Misalnya 0.047uF dapat juga dibaca sebagai 47nF, atau contoh lain 0.1nF sama dengan 100pF. Tipe Kapasitor Kapasitor terdiri dari beberapa tipe, tergantung dari bahan dielektriknya. Untuk lebih sederhana dapat dibagi menjadi 3 bagian, yaitu kapasitor :
 electrostatic, Kapasitor electrostatic adalah kelompok kapasitor yang dibuat dengan bahan dielektrik dari keramik, film dan mika. Keramik dan mika adalah bahan yang popular serta murah untuk membuat kapasitor yang kapasitansinya kecil.  electrolytic dan electrochemical. Kelompok kapasitor electrolytic terdiri dari kapasitor-kapasitor yang bahan dielektriknya adalah lapisan metal-oksida. Umumnya kapasitor yang termasuk kelompok ini adalah kapasitor polar dengan tanda + dan - di badannya. Mengapa kapasitor ini dapat memiliki polaritas, adalah karena proses pembuatannya menggunakan elektrolisa sehingga terbentuk kutup positif anoda dan kutup negatif katoda.

  • Kapasitor Electrostatic

kapasitor jenis ini adalah batere dan accu. Pada kenyataanya batere dan accu adalah kapasitor yang sangat baik, karena memiliki kapasitansi yang besar dan arus bocor (leakage current) yang sangat kecil. Tipe kapasitor jenis ini juga masih dalam pengembangan untuk mendapatkan kapasitansi yang besar namun kecil dan ringan, misalnya untuk applikasi mobil elektrik dan telepon selular. Toleransi Seperti komponen lainnya, besar kapasitansi nominal ada toleransinya. Tabel diatas menyajikan nilai toleransi dengan kode-kode angka atau huruf tertentu. Dengan table di atas pemakai dapat dengan mudah mengetahui toleransi kapasitor yang biasanya tertera menyertai nilai nominal kapasitor. Misalnya jika tertulis 104 X7R, maka kapasitasinya adalah 100nF dengan toleransi +/-15%. Sekaligus dikethaui juga bahwa suhu kerja yang direkomendasikan adalah antara -55Co sampai +125Co (lihat tabel kode karakteristik) Dissipation Factor (DF) dan Impedansi (Z) Dissipation Factor adalah besar persentasi rugi-rugi (losses) kapasitansi jika
kapasitor bekerja pada aplikasi frekuensi. Besaran ini menjadi faktor yang diperhitungkan misalnya pada aplikasi motor phasa, rangkaian ballast, tuner dan lain-lain. Dari model rangkaian kapasitor digambarkan adanya resistansi seri (ESR) dan induktansi (L). Pabrik pembuat biasanya meyertakan data DF dalam persen. Rugi-rugi (losses) itu didefenisikan sebagai ESR yang besarnya adalah persentasi dari impedansi kapasitor Xc.

Software

Software, ?? Software bisa disebut juga dengan perangkat lunak ( Piranti lunak ). Apa itu Perangkat lunak ?? pertama aku denger perangkat lunak juga bertanya ?? apa kayak ager2 yah lunak ?? he he he tapi bukan itu .

SoftWare adalah kumpulan dari beberapa perintah yang dapat dieksekusi oleh mesin yang bernama komputer dan dapat disimpan oleh komputer. Berupa data elektronik berupa biner ( susunan logika ). Data yang disimpan berupa program dan instruksi yang dapat dijalankan oleh komputer, maupun catatan-catatan yang diperlukan oleh komputer untuk menjalankan perintah yang dijalankannya. Untuk mencapai keinginannya tersebut dirancanglah suatu susunan LOGIKA, Logika yang disusun ini diolah melalui perangkat lunak, yang disebut juga dengan program beserta data-data yang diolahnya. Pengeloahan pada software ini melibatkan beberapa hal, diantaranya adalah SISTEM OPERASI, program, dan data. Software ini mengatur sedemikian rupa sehingga logika yang ada dapat dimengerti oleh mesin komputer.

Di Era IT ini sudah Banyak SoftWare Contoh :

1. Office
2. Oracle
3. Nero
4. Adobe Reader

dan banyak yang lain

Dasar Elektronika

Dalam kehidupan sehari-hari kita banyak menemui suatu alat yang mengadopsi elektronika sebagai basis teknologinya contoh ; televisi, tape atau CD, radio, telephone, komputer, printer, faximile. Tanpa kita sadari hampir semua pekerjaan kita berhubungan dengan Elektronika, tapi pernakah anda terpikir bagaimana cara membuatnya ???

Revolusi besar-besaran terhadap elektronika terjadi sekitar tahun 1960-an, dimana saat itu mulai ditemukan suatu alat elektronika yang dinamakan Transisor, sehingga dimungkinkan untuk membuat suatu alat dengan ukuran yang kecil dimana sebelumnya alat-alat tersebut masih menggunakan tabung-tabung facum yang ukurannya besar serta mengkonsumsi listrik yang besar. Hanya dalam kurun waktu 10 tahun sejak ditemukan nya transistor, ditemukan sebuah rangkaian terintegrasi yang dikenal dengan IC ( Integrated Circuit ) merupakan sebuah rangkaian terpadu yang berisi puluhan bahkan jutaan transistor di dalamnya. Sehingga kita bisa melihat sebuah perangkat elektronika semakin kecil bentuknya tetapi semakin banyak fungsinya sebagai contoh telephone genggam ( Handphone ) yang anda pakai saat ini dengan telephone genggam yang anda pakai beberapa tahun yang lalu. Yah semua itu berkat revolusi Silikon sebagai bahan dasar pembuatan Transistor dan IC atau CHIP.

1. Resisitor.

Resistor atau yang biasa disebut (bahasa Belanda) werstand, tahanan atau penghambat, adalah suatu komponen elektronika yang memberikan hambatan terhadap perpindahan elektron (muatan negatif).

Resistor disingkat dengan huruf "R" (huruf R besar). Satuan resistor adalah Ohm, yang menemukan adalah George Ohm seorang ahli bangsa Jerman. Tahanan bagian dalam ini dinamai Satuan konduktansi ditulis dengan kebalikan dari yaitu Mho Kemampuan resistor untuk menghambat disebut juga resistensi atau hambatan listrik. Besarnya diekspresikan dalam satuan Ohm. Suatu resistor dikatakan memiliki hambatan 1 Ohm apabila resistor tersebut menjembatani beda tegangan sebesar 1 Volt dan arus listrik yang timbul akibat tegangan tersebut adalah sebesar 1 ampere, atau sama dengan sebanyak 6.241506 × 1018 per detik mengalir menghadap arah yang berlawanan dari arus.

Hubungan antara hambatan, tegangan, dan arus, dapat disimpulkan melalui hukum berikut ini, yang terkenal sebagai [[hukum Ohm:

R = \frac{V}{I}

di mana V adalah beda potensial antara kedua ujung benda penghambat, I adalah besar arus yang melalui benda penghambat, dan R adalah besarnya hambatan benda penghambat tersebut.

Berdasarkan penggunaanya, resistor dapat dibagi:

  1. Resistor Biasa (tetap nilainya), ialah sebuah resistor penghambat gerak arus, yang nilainya tidak dapat berubah, jadi selalu tetap (konstan). Resistor ini biasanya dibuat dari nikelin atau Resistor Berubah (Variable ) ialah sebuah resistor yang nilainya dapat berubah-ubah dengan jalan menggeser atau memutar toggle pada alat tersebut. Sehingga nilai resistor dapat kita tetapkan sesuai dengan kebutuhan. Berdasarkan jenis ini kita bagi menjadi dua, Potensiometer, rheostat dan Trimpot (Trimmer Potensiometer) yang biasanya menempel pada papan rangkaian (Printed Circuit Board, Resistor dan , NTC (Negative Temperature Coefficient), ialah Resistor yang nilainya akan bertambah kecil bila terkena suhu panas. Sedangkan PTS (Positife Temperature Coefficient), ialah Resistor yang nilainya akan bertambah besar bila temperaturnya menjadi dingin.
  2. Dioda peka cahaya, LDR (Light Dependent Resistor), ialah jenis Resistor yang berubah hambatannya karena pengaruh cahaya. Bila cahaya gelap nilai tahanannya semakin besar, sedangkan cahayanya terang nilainya menjadi semakin kecil.

WARNA GELANG - GELANG RESISTOR
Warna Gelang Pertama Gelang Kedua Gelang Ketiga (multiplier) Gelang ke Empat (toleransi) Temp. Koefisien
Hitam 0 0 ×100

Coklat 1 1 ×101 ±1% (F) 100 ppm
Merah 2 2 ×102 ±2% (G) 50 ppm
Jingga 3 3 ×103
15 ppm
Kuning 4 4 ×104
25 ppm
Hijau 5 5 ×105 ±0.5% (D)
Biru 6 6 ×106 ±0.25% (C)
Ungu 7 7 ×107 ±0.1% (B)
Abu-abu 8 8 ×108 ±0.05% (A)
Putih 9 9 ×109

Emas

×0.1 ±5% (J)
Perak

×0.01 ±10% (K)
Polos


±20% (M)








Coba Kode Warna Kalian Disini. Klick Disini

Lemon battery



You probably know about a battery that can be built by using a lemon (or onion, potato, grape...) and two electrodes of a different type of metals. With that we can only get around 0.5 to 1V.

This battery is made out of 4 cells, weights just 0.85g and can supply power for a bright LED for 60 minutes. The best part of it is that you don't need to carry a lemon around with you. You only need 4 drops of lemon juice and you got your self a 3.5V 35mAh battery.

To make this battery you will need a zinc wire, some copper wire and a paper tissue that will act as a lemon juice storage compartment.


Posting by www.elektronika ba.com

Perangkat Keras Komputer - Process Device

Otak sebuah komputer berada pada unit pemrosesan (Process device). Unit pemrosesan ini dinamakan CPU ( Central Processing Unit ). Fungsi CPU adalah sebagai pemroses dan pengolah data yang selanjutnya dapat menghasilkan suatu informasi yang diperlukan. Pada komputer mikro unit pemrosesan ini disebut dengan micro-processor (pemroses mikro) atau processor yang berbentuk chip yang terdiri dari ribuan sampai jutaan IC. Fungsi utama dari CPU bekerja dengan aritmatika dan logika terhadap data yang terdapat dalam memori atau yang dimasukkan melalui unit masukkan seperti keyboard, scanner, atau joystick. Kecepatan processor atau CPU ini diukur dengan satuan hitung hertz atau clock cycles. Saat ini, komputer memiliki kecepatan processor sampai giga hertz. 1 Giga Herzt sama dengan 1.000.000.000 herzt. Perkembangannya processor yang pertama kali muncul tahun 1990-an adalah pentium dengan kecepatan 75 Mega Hertz, dan saat ini kecepatannya sudah mencapai 3 Giga Hertz lebih dengan processor Pentium IV. Seiring dengan kecepatan Pentium IV, telah pula diperkenalkan processor dengan teknologi mobile yaitu Centrino (Pentium M – Centrino) jenis processor ini baru terdapat pada komputer-komputer built up, laptop, notebook. Saat ini, processor yang terbaru adalah Dual Core (Core Duo). Processor ini memiliki dua kecepatan giga hertz seperti memiliki dua processor. Beberapa produsen processor yang terkenal adalah Intel, AMD dan Cyrix. CPU bekerja berdasarkan instruksi suatu software, atau instruksi suatu program.

a. ALU ( Arithmetical Logical Unit )Fungsi unit ini adalah untuk melakukan suatu proses data yang berbentuk angka dan logika, seperti data matematika dan statistika. ALU terdiri dari register-register untuk menyimpan informasi. Tugas utama dari ALU adalah melakukan perhitungan aritmatika (matematika) yang terjadi sesuai dengan instruksi program. Sirkuit yang digunakan oleh ALU ini disebut dengan adder karena operasi yang dilakukan dengan dasar penjumlahan. Tugas lain dari ALU adalah melakukan keputusan dari operasi sesuai dengan instruksi program yaitu operasi logika (logical operation). Operasi logika meliputi perbandingan dua buah elemen logika dengan menggunakan operator logika, yaitu :

* Sama dengan (=)
* Tidak sama dengan ( <> )
* Kurang dari ( < ) * Kurang atau sama dengan dari ( <= ) * Lebih besar dari ( > )
* Lebih besar atau sama dengan dari ( >= )

b. CU ( Control Unit )Fungsi unit ini adalah untuk melakukan pengontrolan dan pengendalian terhadap suatu proses yang dilakukan sebelum data tersebut dikeluarkan (output). Selain itu CU menafsirkan perintah dan menghasilkan sinyal yang tepat untuk bagian lain dalam sistem komputer. Unit ini mengatur kapan alat input menerima data dan kapan data diolah serta kapan ditampilkan dari program komputer. Bila terdapat instruksi perhitungan atau logika maka unit ini akan mengirim instruksi tersebut ke ALU. Dengan demikian tugas dari Control Unit ini adalah :

* Mengatur dan mengendalikan alat-alat input dan output
* Mengambil instruksi-instruk dari memori utama
* Mengambil data dari memori utama (jika diperlukan) untuk diproses
* Mengirim instruksi ke ALU bila ada perhitungan aritmatika atau perbandingan logika serta mengawasi kerja dari ALU
* Menyimpan hasil proses ke memori utama. Fungsi peralatan yang terdapat dalam CPU dibagi menjadi 3 Macam yaitu :

a. Peralatan Proses ( Process Storage)

Peralatan Proses adalah alat yang digunakan untuk melakukan suatu pemrosesan data. Yang termasuk peralatan proses adalah sebagai berikut.

1.) Processor Alat ini berfungsi sebagai pengolah data, processor merupakan bagian yang sangat penting dalam komputer. Kehandalan suatu komputer dapat dilihat dari processor yang digunakannya, misalnya Processor : Intel Pentium 4, AMD, Centrino dan Core Duo. Semakin tinggi tingkatan processor-nya semakin baik fungsi komputer tersebut.
2.) Register Register merupakan jenis memori yang terdapat pada processor dan sebagai memori internal processor. Register merupakan memori yang mempunyai kecepatan tinggi 5 sampai 10 kali dibandingkan memori utama. Register digunakan untuk menyimpan instruksi dan data yang sedang diproses oleh CPU, sedang instruksi-instruksi dan data lainnya yang menunggu giliran untuk diproses masih disimpan di memori utama.
3.) Cache memoriMerupakan memori yang dapat meningkatkan kecepatan komputer dan dikatakan sebagai memori perantara.
4.) ROM ( Read Only Memory)Memori dalam CPU berfungsi membantu proses kerja komputer. ROM adalah salah satu memori, mempunyai sifat hanya dapat dibaca dan tidak bisa diubah dan mempunyai sifat yang permanen atau tetap (non volatile). ROM mulai berfungsi saat menghidupkan komputer.Sebagian perintah ROM ini dipindakan juga ke dalam RAM berupa instruksi atau syntax-syntax. Misalnya, untuk melihat isi file dengan perintah DIR dan untuk mengecek kapasitas disket atau harddisk dengan CHKDSK, ROM bersifat tetap atau permanen bila terjadi mati listrik, file pada ROM tidak akan hilang. Instruksi yang tersimpan dalam ROM disebut dengan microinstruction atau firmware karena hardware dan software dijadikan satu oleh pabrik pembuatnya. Apabila isi dari ROM hilang atau rusak maka sistem dari komputer tidak dapat berfungsi, oleh karena itu pabrik komputer merancang ROM hanya dapat dibaca saja dan tidak dapat dirubah. Selain ROM terdapat pula jenis ROM yang dapat diprogram kembali yaitu PROM (Programmable Read Only Memory), yang hanya dapat diprogram satu kali dan tidak dapat diubah kembali. Kemudian terdapat pula jenis lain yang disebut dengan EPROM (Erasable Programmable Read Only Memory) yang dapat dihapus dengan sinar ultraviolet serta dapat diprogram kembali berulang-ulang. Dan jenis yang disebut EEPROM (Electrically Erasable Programmabel Read Only Memory) yang dapat dihapus secara elektronik dan dapat deprogram kembali.
5.) RAM ( Random Access Memory )Merupakan jenis jenis memori yang dapat dibaca, diisi, dan diubah menurut kebutuhan (volatile). RAM mempunyai sifat sementara. Sifat sementara ini maksudnya adalah jika terjadi mati listrik maka data yang berada dalam RAM akan hilang. Misalnya, Pada saat anda mengetik yang ketikan telah sampai dua lembar, tetapi belum disimpan hasilnya ke dalam disket atau harddisk, hasil ketikan Anda akan berada di dalam RAM. Bila terjadi mati listrik maka data yang ada di dalam RAM akan hilang, Struktur RAM dibagi menjadi empat bagian utama, yaitu :

* Input Storage, digunakan untuk menampung input yang dimasukkan melalui alat input.
* Program Storage, digunakan untuk menyimpan semua instruksi-instruksi program yang akan diakses.
* Working storage, digunakan untuk menyimpan data yang akan diolah dan menyimpan hasil pengolahan.
* Output Storage, digunakan untuk menampung hasil akhir dari pengolahan data yang akan ditampilkan ke alat output. Berdasarkan struktur RAM tersebut, data yang diinput ke dalam sistem komputer akan ditampung ke dalam input storage, bila data dalam bentuk instruksi program maka akan dimasukkan ke dalam program storage, dan bila dalam bentuk data dan hasil pengolahan data maka akan dimasukkan ke working storage, kemudian sebelum data akan ditampilkan atau output maka akan disimpan ke dalam output storage.

Terdapat beberapa jenis RAM yang beredar dipasaran hingga saat ini yaitu :

1. FPM DRAM (Fast Page Mode Random Access Memory), RAM yang paling pertama kali ditancapkan pada slot memori 30 pin mainboard komputer, dimana RAM ini dapat kita temui pada komputer type 286 dan 386. Memori jenis ini sudah tidak lagi diproduksi.

2. EDO RAM ( Extended Data Out Random Access Memory), RAM jenis ini memiliki kemampuan yang lebih cepat dalam membaca dan mentransfer data dibandingkan dengan RAM biasa. Slot memori untuk EDO – RAM adalah 72 pin. Bentuk EDO-RAM lebih panjang daripada RAM yaitu bentuk Single Inline Memory Modul (SIMM). Memiliki kecepatan lebih dari 66 Mhz

3. BEDO RAM (Burst EDO RAM), RAM yang merupakan pengembangan dari EDO RAM yang memiliki kecepatan lebih dari 66 MHz.

4. SD RAM (Synchronous Dynamic Random Access Memory), RAM jenis ini memiliki kemampuan setingkat di atas EDO-RAM. Slot memori untuk SD RAM adalah 168 pin. Bentuk SD RAM adalah Dual Inline Memory Modul (DIMM). Memiliki kecepatan di atas 100 MHz.

5. RD RAM (Rambus Dynamic Random Access Memory). RAM jenis ini memiliki kecepatan sangat tinggi, pertama kali digunakan untuk komputer dengan prosesor Pentium 4. Slot Memori untuk RD RAM adalah 184 pin. Bentuk RD RAM adalah Rate Inline Memory Modul (RIMM). Memiliki kecepatan hingga 800 MHz.

6. DDR SDRAM (Double Data Rate Synchronous Dynamic RAM). RAM jenis ini memiliki kecepatan sangat tinggi dengan menggandakan kecepatan SD RAM, dan merupakan RAM yang banyak beredar saat ini. RAM jenis ini mengkonsumsi sedikit power listrik. Slot Memori untuk DDR SDRAM adalah 184 pin, bentuknya adalah RIMM